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ABSTRACT OF THE DSSERTATION

Bounds for Iterates, Inverses and Spectral Variation
of Non-Normal )atricea

by
Edward Arthur Sallin

University of California, Los Angeles, 1963

Professor Peter K. Henrici, Chairman

For an arbitrary multiplicative matrix norm .) and arbitrary

non-singular matrix N, we define the condition number C (N) of

N with respecr to -) as V(N) 2(N-). A square matrix is said

to be quasi-diagonal if it is a symetrically partitioned triangular

matrix which is diagonal when considered as a partitioned matrix.

The following problems of computational linear algebia are

considered in this paper-

(1) Given an arbitrary square matrix A, to explicitly

construct: and determine a bound for a condition number of a matrix

N such that Q - N
- '1 AN is quasi-diagonal.

(II) To estimate the norms of An , n - 1,2, ... in terms of

the eigenvalues of A and C (N).

(III) To estimate the error - A b of an approximate

solution Z of the equation Ax - b in terms of the residual

r - Ax. - b, the eigenvalues of A and C (N). To estimate the

error X - A71  of an approximate inverse X of A in terms of

the residual AX - I, the eigenvalues of A and C,(N)o

(IV) To estimate the distance of the spectrum of an arbi-

trary matrix B from tbe spectrum of A in terms of a norm of

B - A, eigervalues of A and C,(N)o



Solutions to problems (I), (III) and (IV) are classical if A

is normal, i.,e , AA A' A. Solutions have been constructed for

non-no-mal A, bu. with lo.a satisfactory results. A partitioned

Schur form of a given matri. A will. be called an ordered Schur

form if (i) thi * genaiues are lexicographic ally ordered by blocks

on the diagonal., and (ii) equal eigenvalues belong to the same

block, Let A be ar ordered Schur form of B and let N be

choeen such chat Q - N-1 AN is quasi-diagonal with Q - diag

(lQ22, .'.Qkk), where Qii A t is of order ni. Writing

D. + L1 'where D, is the diagonal part of Q and setting

a ar(L ) '-i .1 XQii where a' is the spectral norm and X A is

the apectral radi-s of A, we. can conclude"

THEOREM-r If X, > 0o
__ B

if k B v :

(B r ) ni <mn (N) max 0 r 12,- ec o j r .o

oY(B r) _ 0,. r > M

where M - max ni  and where the minim' m is taken over all ordered

Schur forms.

'If fr (x) ii defined for all x > 0 b fn(x) _ + ,x 2 +

x we have.

THEOREM, If B is non-singular and non-normal and if

-lhe

then



d(7• <_ mi (N)ma n

where the mantmum is taken over all ordered Schur forms.

n
Let the function g a gn(y) be defined for all y > 0 as

the (unique) non-negative solution of the equation g + g2 + o

n+ g , y. Then if M is an arbitrary matrix with eigenvalues i

and B has eigenvalues p,, the quantity

a W s(B) - max in - X IM i (t -l i I

is called the _ ectral variation of B with respect to M.

THEOREM. For non-normal M with M - B # 0 we have for any

norm 1) dominating oa.

s (B) < min {max nL-] C ,(N) (U*BU- M)M 1 9 ns (yi)

where

-2)(L d)Ci)

Y" c N) 2CU*BU -M)

and the minimum is taken with respect to all U occurring in an

ordered Schur form of M.



INTRODUTION

Unless otherwi,ze ,tat-d all matrices in this paper shall be

assumed to be rec -angular m x n wtth complex elements and shall

be denoted by A - (a ), a vector shall mean a column vector with

n complex elem ents.

A matrix rorm is a real valued function 2) defined on the

space of .qua, matrire. aid satisfying the following relations

for arbitrary matr-i:es A and B and arbitrary complex scalars

!a) -2)(A) > 0 2)(A) A 0 tf And oniy if A - 0

(b) -V (cA) ! 2) i}(A)

(c) -2)(A * B) < 2) (A) + 2)(B),

If in addirtor,

(d) 2)'(AB) < 2)(A) 2)(B)

the norm is . !led rul ipt.L.__ive, We .hall be concerned primarily

with such nrrms.

A vector norm is a real-valued function defined on the space

of vect:ors and satisfying relations analogous to (a),, (b) and (c)

above,.

By c.h. spectrum of a matirx A we mean the totality of its

eigenvalues, considered as a point set in the complex plane. The

largest of the moduli of the etgenvaiues of A is called the

spe:tra. radius of A and is denoted by XA' For any invertible

4



matrix S and multiplicative norm --) the condicton number,

C (S), of S with respect to the norm V is defined by

C)(S) - -2(S) )(S-1 ). Bauer [2]

A matrix is said to be partitioned (a partitioned or block

matrix) if it has been divided into smaller arrays by horizontal

and vet'.ical Itnee and each of the resulting submatrices have been

represented by a single element. If an m X n marrix A is

partitioned.d 1 shall be devoted by A - (A ij); the i~j element

of A bp-ing the submatrix A of A, or' order m, X n where
ij I j

M, W m, 2 V, Ia A partitioning of a matrix A by an equal

number of horizontal and vertizal lines in such a manner that each

of the resulting dtagonal entrtes: A W are square matrices is

called a jyy netrlc partition.

A symmetrically partitioned triangular matrix A will be

called s triangular. Thus

AIj - 0 for i < J, and

A 1 are (lower) triangular matrices.

A partitioned matrix A is said to be quasi-diagonal if it

is sp-triangular and if Aij - 0 for i # Jo

The following problems of computational linear algebra will

be considered in this paper.

(1) Given an arbitrary sp-triangular matrix, A, to con-

strucr a matrix N such that N-1 AN is quasi-diagonal with



prederermined diagonal entries and to determine a bound for a con-

dition number of W.

(ii) So estimate the norms of the matrices An , n - 1,29-.1

in terms of the eigenvalues of A and a condition number of N,

above.

(iii) To estimate the error - A Ib of an approximate

solution of the equation Ax - b in terms of the residual

r A; - b, the eigenvalues of A and a condition number of N.

(iv) To estimate the distance of the spectrum of a matrix

B from t:he. spectrum of A in terms of a norm of B - A, the

eigenvalues of A and a condition number of N.

Solutions to problems (it), (iii) ard (iv) are classical if

A is normal. ioe. AA - A*A Solutions have been constructed

for non-normal A, but wa'h les,- tirfactorv results. Some of

the bounde given depend on a knowledge of a matrix S in the

repreeentation A m SJS- 1 . when J is the Jordan canonical form.

Other bounds do not approacb the classical bounds if A approaches

a normal matriA. the bounds given in the present paper, while

depending on the eigenvalues of A and their multiplicities, do

not require a knowledge of the Jordan canonical form. Furthermore,

our estimates approach the classical estimates for A normal. Our

insistence on not using the Jordan form is motivated partly by

reasons of computational convenience, and partly by the fact that

the jordan form is a discontinuous function on the space of matrices

and is therefore ill suited for purposes of computation (see (8)
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for related remarks),

We shall develop a canonical form for arbitrary (non-normal)

matrices [problem (J) above] which is continuous in nature and for

which we can explicitly demonstrate a transforming matrix N and

its condition number. Such a canoniral form i developed in 2.1

and 3J.o Representations for N are given in 2.21. and 3.2 and

estimatec, for a condition n.mber are given in sections 2.22 and

The ,e results are then applied to problem, (ii), (iii) and

(iv) in Chapters 4, and 5.

Certain estimates based upon a measure of non-normality of a

matrix have been derived by Wielandr in (29] and Henrici in L14]o

Wielandt's measure ts applic.able only to matrLces which are similar

to a diagonal. matrix. Henri i removes this restriction but gets

estitmates in terms of XA, consequently making no use of eigen-

values of smaller modulus



CHAPTER 1

Preliminaries on Norms

It will be necessary to consider norms defined for rectangular

matrices. That this can be done is shown by the following lemma.

LEN A lo Given a family F of rectangular matrices of

bounded row and column dimension) say k, and an arbitrary multi-

plicative norm 2) defined for square matrices, then exists a

family of norms -J - q > k which are multiplicative on F.

Proof. Let A,BC be members of F where A and B are

of order r1 X s1 and C is of order r2 X S2' Let q be any

integer such that q > k. In particular then q ? rl>sl,r2,s2*

Define A to be the q X q matrix formed from A by the ad-q

dition of q - r1  rows of zeros and q - s1  columns of zeros.

61 q-s
I

A A ( 0 rl
q q-rl

Define -)q (A) - 2)(A ).

With this definition 2)q has the properties of a multiplicative

norm, for

() -q (A) - 0 implies )(Aq) q 0 which in turn means

that Aq and consequently A are null matrices. ) q(A) > 0

since Vd(A q -d (A)

8



(ii) Vq(CA) - -i)[(cA)q] - V(cAq) I iC'(Aq) - I -2)q(A)o

(iii) -q (A t B) - )[(A + B)q]- [A Bq]

< )(A q) + -)(B ) -2 q (A) + -) q(B).

Whenever the product. AC t. defined, i.e., when s1  r2 we have

s, q-s2  81 q-sI  a2 q--s2r . rl ( C ) s

(iv) (AC)q oC ) ~ < \0 ( 0
q-rl --rl q-sl

- AqC and

,q(AC) -I[(AC)] VkACq)
q L jqq

.) )(A q) )(C q -z)q (A) -YO (C)

We shall have occasion to deal with functions defined on

scalar matrices whose elements are themselves norms of elements of

iome fixed partl,tioned matrix, By restricting the class of norms

employed we can guarantee that these functions will be norms of

the original matrix. The principal result is given by Le-a 3.

If A and B are matrices of the same row and column di-

mensions, A < B shall mean aij _K b j (i - 12, ... m;

j 2 Given any matrix A - (a ij) 1A is the matrix

whose general element is Ia ijI A norm V is called monotone

if for A and B of the same dimensions, 1AI < B implies

V(A) < V (B)

A sufficient, condition for a norm to be monotone is given by

the following lemma.
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LEMMA 2. Le t -L) be any norm such that )(IAI) - d(A).

Then -j) is monotone.

Proof. Let A and B be given matrices of order m X n

and let IAI < B. Thus

I ij I bij (i " . j - 1,2,o..,n).

Since, by bypothesis, -d depends only upon the magnitude of

each element of A we can assume that all aj > 0. To show that

-V(A) < -)(B) it is sufficient to consider the case where only one

equality in (1-1) fails to hold, say ars < brs

By postulate (b) of the definition of a norm we can assume

that brs  1. To simplify the writing we can assume further that

we have r s - 1 and hence 0 < al1 < b 1 1 and have to show

that -)(alb 12 ", ,bmn) < 73)lb 1 2 -,b m) But this follows

immediately if we use the decomposition

a 11  b 1..b nb 12 i n

b21 b22 b2n 11 + all b21 b22 b 2n
2

bml bin2 b mb b2 b

7-1 b 12, bln

b21 b22 b 2n

+ 2

(bml bm2 b" in)



* and apply the triangle inequality and postulate (b) of a norm,

since we then have

i(all ,b 12 " bmn)

l~a 1-

2~~ 1 1.Nl) b1 )2-, n 21" 'm

2 a+ a (lb a o obmn 2 (1, 1 ,b )

2 ( 12 2 12

This generalizes Ostrowski's [201 concept of coordinatewise

symmetric gauge functions.

The use we shall make of the concept of monotone norms is

given in the following lemma.

LEMMA 3. Let A - (A ij) be a partitioned matrix. Letp be

an arbitrary multiplicative norm and A the scalar matrix whose

general element is p(Aij).

Then if -d is a monotone multiplicative norm, the function

N, defined by N(A) - -1 (A) is a multiplicative norm,

Proof. We must verify the four postulates for a multiplicative

norm. Namely,

(a) N(A) - 0 implies )(A) and hence A - 0o Then

p(Aij) 0, A1j - 0 and finally A - 0. N(A) > 0 since 2) is a

norm,,
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(b) N(cA) - -d~cA) -i 4P (cA i)] -j)I~(,)

- -1)(IcIA) - IcI ji(X) -Icd N(A)

(c) N(A + B) -i)(A- -B)

(1-2) 'd ~(A 1 j + BJ)] [p(,J +p(BJ)J

-i)(A + B-) < z)(A) + 2)(i) - N(A) + N(B)

(d) N(AB) - -2(A-B)

(1-3) a-2 [P X A ik~kj) .[ p(A, ) ID(Bkj)]

- _)( -,) < - (i)X 2)() = N(A)N(B)

(1.2) and (1.3) hold since -) is monotone.

The following are some of the most common norms of matrices

A = (aij) (See [16], [21]).

a(A) - 1aijI
ij

oa(A) - max L ] J (Spectral norm)
x#O X*x

p(A) = max I a I
i j ii

y(A)i-max X ia I
j i ii

( (A-[ I 2 ]
1 / 2

C(A) - [ j Iaij (Euclidean norm)

The last three are obvious examples of monotone norms.
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If 0 is a vector norm, then the function -j) defined by

7) - sup O(Ax)

always defines a matrix norm, Matrix norms defined in this way are

called lub norms in [3]. The norms 0, p and y defined above

can be derived in this manner from suitable vector norms [24]. On

the other hand, some matrix norms, such as F, cannot be thus

derived,

We shall use the following definitions:

A matrix norm 2) is called compatible with a vector norm

if p(Ax) < V)(A)p(x) for all matrices A and vectors x. A lub

norm is always compatible w-th the vector norm defining it.

A matrix norm -2) will be called unitarily invariant, if

n)(U*AU) - i)(A) for all A and all unitary U. The norms o

and C are unitartly invariant, while 0 and y are not.

A lub norm is called axis-oriented [3] if A)(D) - max Idiil
l< i< n

X kD  for any diagonal matrix D - (d,,). The lub norms ' p, y

are axis-oriented.

A norm -V is said to _aorize another norm p if 2)(A)>p(A)

for all, A, The C norm majorizes o

We shall require the following consequences of the defining

properties of a norm, [See (213 for proofs].

LEMMA 4, If X A denotes the spectra. radius of A, then

2)(A) > XA for a matrix norm ) ,
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LEMKIA 5. If )a and -V are any two matrix norms, then there

exists a constant P., dependin$ only on these two norms, such

that

p(A) < P P )-L A) ,

for all matrices A.

Values of P PV for special. norms are given in [271.

We have finally

LEMKA 6,, Let D) be the quasi-diagonal matrix D - dg(DD 2 0

-,D ).Then a0D) - max c(D).
1 2

For the proof we note firt that & (A) - XA*A for all A

and in par'icular &() XDD But D*D - dg(D*DuD*D ,...D*D)

and the eigenvalues of D*D are thie union of those of D* D i Thus

X D*D m m X D*D and T2 (D -ma (D1
i I i



CHAPTER 2

Introduction. This chapter is divided into two sections. The

first is concerned with the problem of establishing the existence

of a matrix N such that N--BN is quasi-diagonal for an arbitrary

matrix B. The results of this section are used to give an explicit

representation for N, above, and to estimate its condition number.

Sestion 2.1, We may restrict our attention to any one of the

triangular forms A of a given matrix B since every matrix is

unitarily similar to a triangular matrix, and since we shall ulti-

mately make use only of unitarily invariant norms. It is true

further that the ordering of the diagonal elements of A (the

eigenvalues of A) may be specified arbitrarily. It is of im-

portance to subsequent estimates we shall make that the specifi-

cation of the ordering of eigenvalues does not uniquely determine

the triangular form.

We assume then that

where X a i 2...,n are the eigenvalues of A, and

where X i X i means that either

(a) Re Xi < Re or

(b) Re Xi M Re X and Im Xi < Im X J

This is the so-called lexicographic, or dictionary, ordering of the

complex plane.

15



If A has elgenvalues X,1 2 * .... n we. define the (disjoint)

sets S ,L' .- Sk of order nlln2,o.. ,nk respectively, such that
k

n, - n,, and

(a) X Sk XJ M X i implies X C Sk and

Wb X i C $S F- S ,p k < p implies Xi. -d' .i k j j J

These sets Sk. k- niquely determine a symmetric partition of

A if we specify that the diagonal terms of each diagonal submatrix

resulting from the partltion-,g belong to one and only one S J

Any, marrix which satisfies the above triangularity, ordering

and partition conditions ihall be said to be in an ordered Schur

form or to be an ordered Schur matrix.

Let then A - (Aij ), (ij - 1,2.. k) be any ordered Schur

matrix, which we assume is of order k, and where the Aij are
k i

matrices of order n X n with n, n.,

DEFINITION. Ei denotes the row vector,

(EIEt 2 .... E )

where E Is of order n1 X n and

0 if s i

is In if sa i

Here I denotes the n: X n identity matrix and I (with no

subscripts) is the n L n identity matrix partitioned as A

above.
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T

DEFINITION. E, is the colmn vector

TEil

TEik
TE

where the E T are the tranaiposes of the E Then
is is

zT  j T  !0 j t

(2 - ) E J E j ELEn ' jE-

jI

It then follows that

(2.1-2) Aj E, A ET

The matrix M - N where N,, is a arbitrary n, X n.
ti  ij 1

matrix, is such that

Nij for r s - J
(2o-3) L 0 otherwise

DEFINITION. The parritio.ed matrices Eij defined by

T Z

B tj 0 9 ij[E i'Z N " I + ENi N Ej

where the Nj are arbitrary nX nj matrices for i > j and

null matrices otherwise are called elementary block matrices. That



II

is

r i r an

(E ij)rs N r - i, s = J

L0 otherwise

Using (2o1-I), (2.1-2) and (2.1-4), the following properties

of elementary block matrices may be verified:

-I[E EL ; N " Ei[EE ; -NL

ij i kj ij kji ij
Lij E kJ - Eij + EkJ - I-o

Letting

k

(2.1-5) NJ (j - 1,2,...,k - 1)
1 1 i>J

we have

NJ I+( E T N )E
i>J ii J

That is

I rn r s i

(N) - N rj r >a, s -J

0 otherwise

Furthermore,

I-. I- ( T EI N j)EJo
i>j
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Letting

k-i

(2.1-6) N - Vf Nj; we have
i-i

I n r - a i=i.. k

rs rs

0 r<s

k-i
N-1 -FT N-1

J k-

Letting N - (iij), where

NSij i > j

N ij "we have

since R 0 for r > k

g-1 + -+ 2 - (_k-I R-I

DEFINITION. The function Fij defined by

I A pi J 1,2, ..,k
F ij(A)-E A i j-

is called an elementary block similarity transformation, We shall
study the effect of Fij on the ordered Schur form A. For i > j

we have using (2.1-3)



(2l-) A(T N Er TN
(2.1-7 (A(EiJ 2 1 irs 2 'rp (E ij Ejps

ri TNi E A

(2.1-8) (E TN E )A) r (E1 Ti ij j rs j pp
pMs

I INj Aj r i

Triangularity of A yields

(2.1-9) (E TN E)A(E TN E)-E TN (E AE )N E
i iji i iji I i iji i ij j

0.

Using (2.1-9) with i > j we have by a straightforward comn-

putation

(F (A)] -E Aij rs ft(ii A ijrs

W-Ar - ((E T N1  E )A) + (A(E T N1  E1)

Coupled with (2.1-7) and (2.1-8) this yields for i > J:
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[Fij (A)] rs

(2.1-10) Ais -N iJ r - i, s j

(2oi-11) Ars rti i, s J

(2.1-12) Aij +A ii Nij -Nij Ajj r i, s- j

(2.1-13) A otherwise

Recalling that A is triangular we note that

0 r < s
EFij(A]gnCFi A)] rs = A rr r = s

rr

We note further that only elements in the ith row and those in the

jth column of A are altered by Fijo

For I j we have E E I and consequentlyFor - wehav Ei ii
CF()] -

iA rs rs

By (2.1-12) we eee that. [F i(A)]ij - 0 if and only if there

exists an ni X n matrix N such that

(21-14) -All Nij + Nij A Aij

That this equation is solvable may be seen from the following

theorem which is proved in the Appendix.

THEOREM A-1. A necessary and sufficient condition that the

matrix equation -AX + XB - C have a solution for all C is that

the eigenvalues of A be distinct from those of B.
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Indeed, since A was assumed to be an ordered Schur form and

i 0 j, the eigenvalues of A are distinc~t from those of Ajio

We shall "ow consider the effect of Fuccessive applications of

elementary similarity transformations, F,, on an ordered Schur

form A where at each stage N is chosen as the solution toii

(2.1-14) . For this we introduce the following notation.

t (1: A)
Let A (1).F 1(A) -A

31

( J) F

I F jiA~k4'-] - A(k"il), I. 2,,..,

where Fij is determined by the condition that

A(i =j) . 0, i.e., that, (2.1-14) is satisfied.
ij

If we define A (i- 1 1 ) . A ( k i- 1  for i - 2,3,..,,k we may write

A(i 'j) Fij[i _ . i 1

A 1(I) Ao

Rewriting (2.1-10) thru (2.1-13) in our new rotation we have
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rs

(2.1-15) A(i-lj) N A(i-1,j) r - i, a # jris -Nij JS

(2.1-16) A(i-lA) + A(i- l i) N r i s j J
rj ri ij

(2.1-17) A(i-lJ) + A(i-lj) N N A(i-lIJ) r - ia j
ii ii i ii

(2o1-18) A(i-l 'j) otherwisers

Since A(iJ) A (r 1,2 .. k) for all (ijJ) we have
rr rr

(2.1-19) A (ij) A A(i-lj) + A N N Aij ij A ij ij Ji

We claim that the result of application of Fij in some order

is to reduce A to a quasi--diagonal form. That this is true can

be seen from the following lemma.

LEMKA 7. If A(i- l j) M 0 for s > r; for s < j where
rs

s < r < k; and for s - j where j < r < i - 1 and if Nij is

chosen such that A(ij) - 0 in (2.1-19) then A(i j) - 0 for
ij rs

s > r; for s < j where s < r < k; and for s -j where

j <r <i

Proof.

(i) r i s # J

A(i.j) . A (i- l J )  by (2.1-18)
rs rs

(ii) r - i, s < 1.
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By (2A-15)

A i - A~ i-i'j) -N A (il1j)

is is ij js

-0

since A (i-lj) and A(1-11j) are, by hypothesis, null matrices.
is js

(iii) r I.s > J.

By (2Al-15)

A~ij 'A'(-.j N A i1J
is is ij js

A(1.-Ij)
is

since A (i 1 D) is lower triangular.

(iv) r < i sm j.

From (2.1-16) and the triangularity of Ailj

A(I') A(1-,J)+ A (i''."j Nrj rj Ti ij

A (i-l'j)

rj

(v) r >i, s -j.

A (ij 0I ~
ij



by definition of F

Comment. We have proved more than the statement of the lemma.

Indeed we have shown that. the only elements of A (i- l .j)  which are

altered by F, are A ,k > i.

Thus the sequence of elementary transformations F2 1,F31 Ao..

Fkl; F 329F 42 F F..,F k2 ;-;Fk~k-1  reduces A to a quasi-diagonal

form whose diagonal blocks are precisely those of A.

Let X denote the matrix formed by the multiplication of the

Eij taken in the same order as the F Namely,

k-i

j-1 i>j

Then ) -lAX - Q, where Q is quasi-diagonal with Q All"

But from (2.1-5) and (2.1-6)

k-1

-1 i>j

Thus N - X and we have finally,

THEOREM 1. For a given ordered Schur matrix A - (A ij) of

order k, let N - (N j) be the sp-triangular matrix such that

for I > j Nij satisfies

-A N +N A (-lj)
ii Lj ij  ii ij

and such that
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N -In

Then

N 1-AN Q

where Q is quasi-diagonal with Q - A (i -i



Section 2.2,

Introduct ion, We Rhall begin this section by determining an

expression for the elements Ar(1 J in term& of elements of A
rj

and N. Using thp i.*. tgra! representatio formula for Nij given

in the Appendix, we are able to express N as a sum of certain

matrices each ot whose elements are integrals of certain functions

of the elements of A.

Using the above repre,.?encation of N we are able to give a

bound for C,(N),,

By further restricting the form of A we are able to give a

bound for a condition number which does not require the expltcit

computation of N.

2o21, A rs.preoentation for N,

We begin with the following lemmas.

LEMMA 8. For j * p < r,

(2o2-1) A(J+p A. N 3N nj
rj , O .j.-t. J , j)

LEMMA 9, If r > j.,

(2°2-) A - ] -j) r Nrj J rt (~j

Lemma 9 is a par icular as- of Lemma 6 where p (r - 1) - J.

27
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Proof of Lemma 8. For p, 1, we have by (2.1-16)

r j rj Ar,j~l j  +I

A(kAr  + A) + (k j-4) N
rj rj+l j4 -1 j

r3 r,j+l j41

I

# X0 A, ,j+f N+q,j
L,0

The validity of the next. to iaso t.&tempn- follows from Lemma 7.

Assuming oow that (2.2-1) holds for p - I we have by (2.1-16) and

Lemma 7:

A0+P, J) A(! jP-I.,) A(J p-lJ)

AAjtpJ) J)A+ N
rjj r-j~ p Jp, j

(J+P-1  B

Y0 A N A N
h .j r j+p jiPpi

- 0A N
rij-t ,j

which is the statement of the lemma,,

We now reproduce an tntegral representation for Nijo The

proof of the validity of this representation and related results

are to be found in the Appendix.

THEOREM.

-'A t A -. j ejt

N -- r 0 e A J e dt.
ij V0ii
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Let now A A -dg(A), A ithen a strictly lower triangular

matrix,, Define now

-r(0
A I~

-A t 0 A t
A (A ' where - e ( dt,r r rs

-(2) -(2) (2) n rp0 r "1
A *-(A rs where ra -/0 (A A e e dt

or in general,

A ~ (-I _A~ A ~ -I e(AP e~ di>

rs r-; rs

The above matrices will, nt bA defined in all ases when the eigen

values of A are complex, I ! lhr.s case we alter the deftnitions

to read,

-(0)

_(2) I va . (ndeed 1)) , 0: r k.

e ao rs

r-iA FiGe 0  e
8  F 'e A J(P'A), exp ~e A ,tjdt

cf 0L rr S

where 0 is determined by the eigerva.ues of A and is given by

Lemma B of the Appendi A. No* ing that for spy lower triangular

matrix B, e Bt is lower trtanauiar we see that the diagonal entries

of A and herre of A art- allt zero, the. fir ,'t two diagonals6 of

A vanish; indeed A: >k

We are now tble to reprasent N explicitlv as indicated in 1-he
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introduction. Namely, we have the following theorem.

THEOREM 2. If

(2.2-1) M - I + AM + j(2) + ... + A(k-1)

then N -M,

Proof. N I (j - 1,2,...,k) which, agrees with the above.

M - 0 for ( < j according to (2.2-3). But N(j M 0 for

( < j also, since N is lower triangular by construction. Assume

now that

N + (I+ () + -(2) + ... + k-))j; .<(-<1i

Than, since

-Ai+li+l .(i J) Aj At
N +lj - fooo e A e1 dt

and

i
A(ij) 2 Ai
i+1"j W

we have from Lemma 9

Nl -0-Ai+li+lt fi N A tJdt

" -A i+li+l A i-lj + Ai t

a-Jo _ A AI + - *+ A e jtd

00-0O°-i+l'i+It,! -.(I) o -(k-1),l~ j

J Ai+l, ((Ifj A, + +-+A e dt
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O -A i+l,+ 1
t f -(M) (') +

-f0 ijAA I. i +(A ) +9j+

+ (X (k-2)) + (Z (k-1)) } eAjjl dt

A(1) -.(2) -(k-1) + -(k)
i+1,j +,.j +  + A .+l, j Ai+lj

.(I+ ) +i+lAj

since A -X for r > s; X(k) _ 0 and Ii+l j 0 0. The abovesic ra rs °~

induction step completes the proof.

It is appropriate at this point to consider the behavior of N

as B approaches normality. Let us consider the given matrix B

and A - U*BU where A is an ordered Schur form and U is unitary.

We put

A - D t M,

where D denotes the diagonal matrix whose main diagonal coincides

2with that of A, Since c is unitarily invariant, [e(B)2 -

2 2 2(A)] n (r(D) 2 + 1(M)] It follows that

2 n 1211/2

r(M)- f(B)]2- X Ix.I'

is independent of the special choice of ordered Schur form., Noting

that B is normal iff C(M) - 0 (see [19], Theorem 10.3.8), we see

that B and, from the continuity of the Schur form, A approaches
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normality as e(M) ---> 0 or, what is the same thing, as the off-

diagonal. elements of A approach zero. The elements of the

matrices A i - 1,2,.. - 1 depend continuously on the off-

dtagonal elements of A and thus approach zero. Finally then,

N -> I continuously as B aproaches normality.

2.22, A bound for the condition of N. It is now possible to

give an upper bound for a condition number of N.

Let.

L.(l)+ (2 ) o + (k-l)

Then L is strictly lower triangular and Lr - 0, r > k. Since

N - I + L,

(-1 - I L + L2 (-l)k-1 L k-l

We have then the following theorem.

THEOREM 3. For any multiplicative norm -),

C (N) < -d (N) [-)(I) + V,(L) + ... + /(L)] k-l]

where L A A) +(2) + -+ (k-l)

2,23, Restricted Schur forms and a new bound for C.(N)o Use

of the bound for C,(N) given in Theorem 3 requires, of course, the

calculation of AW 1 " 1,,2, ,k- 1. Due to the prohibitive

nature of the calculations required we shall derive a new bound for

C,(N). This bound does not require the calculation of the A i)

but further restricts the Schur form and does not in general yield



as sharp a bound as that given by Theorem 3.

We begin by finding a bound for the norm of X, where

X - J0O  -At CBt

and A and B are lower triangular. It will be necessary to make

certain assumptions regarding the eigenvalues of A and B. We

need however, to prove the following lemma first.

LEMMI& 10, Let B(t) be any Riemann integrable matrix function

(i.e., each element of B(t) is Integrable), and let lIIll denote

an arbitrary matrix norm.

If

A B(t)dt

then

I1A1i < I IB(t) IIdt.

Proof. Let

A(x) x B(t)dto

Then

A0 (x) - B(x) and A(co) A

By a result of Dahlquist (7j we have for every matrix A(x)

and norm 1loll that

(2.2-4) HlAWx) 1 < iWAW1) l.
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Integrating (2 .2-4)

IA(x) i - IIA(O)il <A x IA'(t)IIdt

or

I A() i I <JOK i(t)Hdt.

Henc e
A < Ro9i'Alli <-4 00 iiB(t)lldt.o

We now turn to the prc-blew of finding a bound for tbe norm of

X;

X -At C de d.

We shall assume that

(1) A, B are lower trtaiglar matrices of order nA 'B

respec tively,

(2) The diagonal entriei of A(B) ar + all equal to some

constant we sha, denoe by k (X) i oe.o A(B) has
A B

only one eigenvalue kA (XB) repeated nA (n )  times.

(3) XA > XB

A and B can then be wrltten as

A A-A - LA

B xB I + LB

where LA and LB  are strictly lower triangular.

Since x AI  and X BI are scalar matrices thev commute re-

spectively with LA and t
B , and we, hv
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-At -(X A ,4LA) t- _ XAIt _LA t
e -ee e

Bt (XBIl . x B It LB t
e *ee e

BAr BBk r A~ *

e-At Ce Bt 0 S _), ' cOB ~

For any ai-criented multiplicative norm i! wt have frYom

Lemma 10 that

00i < oe(XB\ A )t "Al "B1  r C9 r"s

1-I ei LB IB I t rWX X ) ~ d
A r-'s- rs0 ~'

Ai- L -. I ~ OD /7w" t r+ S
r0C ~ i0 A LE -I o t dt

A Br r~ A J B, \

eote that

1 S -1 r rtS k p-

rO 6_0 ku( O XB0

R S r 9 R+S , k xpk-

k 0 pa*O '

R+S k
+ ~ ~Y)

k-0
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We have, upon substituting AA 1 A H1 (3

A B k-O A=B

or

(2.2-5) lXH < XA - XB kI q AB
A Ba kaO

(A + fBq A B w % - T '
~A Z

This matrix X is, of corse, the, o.'ion of --he matrix

equation -AX + XB - C provided XA > X If however we only know

that X A - XB  the solution to the matrix equation is give. ( ee

Lemma B, Appendix) by

X- oo ei exp .el At] C p Bt] dz.

where 0 is given by the above ited theorem. We may then gene-ral-

ize (22-5) in the case where A A >_ XB °

LEMMOA 11. Let A, B be lower trian ular matrices of order

hA$ nB respectively, with Leeated rts ) A X respectively. If

XA 'S 3and

X D e e4e exp-.i At C exp[e Btdt
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is a solution of the matrix equation -AX + XB - C then

nAe, riB--2

HXI K HCH 2A k< x A _ B i k qAB

(A B
qAB IX A XB

The proof is similar to that used in der:.iAng (2.2-5) in which

IxA - X I replaces X - xg and will not. be repeated.

A B A -B

DEFINITION. A restricted Schur form ii. at ordsred Szhur form

in which the sets Si  introduced in section 2.l each contain only

(repeated) eigenvalue.

Let A - (A j) be such a form. Then we may write

A -I Lrr r r

A I X- Lss S a

where Art (A s) is of order n r(n ) and L and L are strictlyrr ssr

lower triangular matrices. If X >- X e:r a

n +n -2

r r r s q kYrs r - x s I k- qrs

where

qr I - X Ir 9
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and If r Ia 111 I~ is I IL.I for in axis oriented multiplicative

norm, 11-11. From Lemma 11,

-(P) eie 10 -ee Atl a tiP1) dtII~ ie x[ ] stdrO 0 rr8. I rs

-s1 rs IAA r 1

For r> a, let

(2.2-6) Y(P) . IVA 11 IhA 1.1
rs s<nj n <,,-<n rnP1 :l p-2

HIA H 81 y ryn P18..Yn p 1,2,..,-1

nSO .s pII 11

rs r

For r< s, let

rs rs

LEMA 12. For r > s, p - 0,1,-,,k - 1
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re - re

Proof.

HAz(0 )II - 111 11rs rs

I H M jvoO ' exp [- 5e( Ar] A~ A 0)r exp e i A.t~dtj

-s rs r

y rs IIA r II

rs

Assuming the inequality holds for p,

X(il co jJ 1 0 e i exp[-~eie A rti (ZA() exp LeOA. t]Jd t

-s rs

rs 11s<n<r rn n Si

Y iHA H1 iIA(~Irs s~n <r rnp nps
p

Yr A II r on h 11y y I s
p-I.p <r-2 s 1 <n2<..<p p-i -

IIs r - np 2H .. IAn 1 1yn n 1s Y

s9<n 1<n 2 0 " '<n <r II np 11IAnp-I~ p-2
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1IAnl181 Ynps Yn °°" Ynp 1

¥(p+i)

r$

which is the st tement of the le-mma for p + 1.

Define

J(P) X (A p ) I )

r$

y(P) (Y(P)' (rs)

A

N (11N Hs1)rs

for rs - 1,2,,k, p - 0,1,...,k -1.

Then, rer,41 1 t.g that

AM + oo+(k-,i)

we have

A + A (1) + A(2) + + A(k-1)
N< k A +A + +A

< I k + y(1 t- y (2) + o + y~k-)

for A < Y in view of Lemua 12.

If -V is a monotone norm

2) N) < 2)(Ik + ¥(l) + Y(2) + - + y(kl)),

Bu , as shown in Lemma 3, the function f defined by
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f (M) for all k X k partitioned matrices M, is a norm.

We have then -he following result,,

THEOREM 4. Let A - (A .) be a reetrtcted Schur form, 11o11

a multjplicative axit:-orlen:ed matrix norm and -) a monotone norm.

They rbae fqnti.cn f deftn.med above is .a norm and

f(N) < -Z (I k  y( 1) T_ y(2) 4 ... + y (k -1))

where the elements of • are given by (2 2--6),

Wr t, tngr,

N I p

wi r h

< p ) 1 1 p , 1) k-11 k-,

2,kk

A-k-

INl< I k  p * L2) + ... P )

r r,since P I () for al'. r,

and ae,-ting 1, Y ( . Y' (2 + Yk-) we have from (2.2-7)

ZN2
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For any monotone norm "j)

2 k-1[N1) < 9.(I.k ) + -J(L) + [ .)(L)2 + --. + CV(L)l

-1 11\
Setting f(N) 2-N)1 we have by Lemma 3 that f is a

norm of N- 1 and consequently arrive at the folkowing thi-orem.

THEOREM 5. With the same hypothesese as in Theorem 4 we have

cf (N) - f(N) f(N )

< (I k L) [ (Ik) + -)(L) + )(L)1 2 + -. + [-)(L) k- 1.]

(1) (2) (k1+Pwhere L Y y + - ..he Y defined as in

(2.2-6),,



CHAPTER 3

Introduction. The representation for N given here is

tdentical to that given in the preceeding chapter. This follows

from the uniqueness of the solution of the matrix equation

-AX i XB - C guaranteed by the assumption of an ordered Schur form.

!h's preceeding chapter has demonstrated the formal methods for

block elimination and at the same time indicated the complicated

process of determining N. Computationally it will be seen that

the methods of this chapter are superior to those of Chapter 2.

Proofs given in that chapter ihall be adopted here specializing to

the cane in hand. The development of this chapter is more straight-

forward than that of the preceeding and is recommended for practical

applications. Chapter 2 should then primarily be considered for its

theoretical value.

Section 3.l. A scalar development for N.

We present here a scalar analogue to the material developed

in 2o,, We again assume that A - (A ij) i,j - 1,2,o.k is an

k
ordered Schur form with Aii of order ni X n with 1 n1 a n.

i-i

Letting a j denote the (ij) element of A considered as a

scalar matrix, we say that the pair of indices (i~j) with i > j

is of type P and denote this by (i~j) c P if aij is not con-

rained in any of the diagonal blocks of A considered as an ordered

Schur form.

43
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If e denotes .1he 1 x v row 'ue¢7or whose only non-zero

slemen. appears i thn ith position it fo1low' that

et  le. ,e e

and

a e A e.

DEFINITION, The matrice. ;1. defined by

where n is ar arbiirarv :ompit Pumber for ( ) -P and zero

otbetwte are called P-elementary ma-rtcee

r s e r .
LO c' he rwi se

The following are IM.madta, e re>suLt& of the above definitions.

-1C e -P I' C ,,e, -n ].
ii1 i j, ii

If

n

I >
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NJ M ( eln )e
1>j nij ej,

That i s

(N) ' - s -j

(N rs jj

0 t otherwise

Furibennore

Fu r re~m

J i>j J,

Letting

n

(3.1-2) N F T N~

we have

1 r s~
rs otherwie

We proceed, as in Chapter 2, to eliminate one by one all those

elements whose subscripts are of type P. In this manner we shall

again arrive al a quasi-diagonal matrix.

DEFINITION,. The function f . defined on all matrices A of

order P by

f (A) A
Id, ii
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is called a P elementary similarity transformation.

Let

Using results aimilat to (2,1-7), (2.1--8 and 2o!-9) we have

(3 a-i3)s n n.j ajs r i, s j J

3 aij r i s j

(3,1-5) rs a,, a,, nlj - nj a. r s j

(3A1-6) L a otherwise

Only elements in -h it.b row and tbose in theji± rhoiumn whose

3ubRcript.s are of #.ype P are affected by f. and A' A_
rr

r - l 2 ....k

By (3.1-5), a'. - 0 if and on'y if ttiere atists a complex
ij

qumb, r n such that
Ij

(3 1 -7) - a 1 j +  n I a j aj

That this is always possible can. be seen by choosing

a,j _ a t ai] aJ3 _ a11

'The de.poinivot nevar vanisheb., for (ij) 4 P which preclude.s the

possibility that a a o
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We now study the effect of successive applications of P-

elementary similarity transformations, fj' where at each stage

ftj (n ' ] is chosen such that equations similar to (3.1-7) are

5atts fi-d.

Let

A~z )  f11 A) - A

(-,J) f= iJ0 iln 3I- o

where f is chosen such that a(ij) . 0 in (3-1-7)o We may
ij ij

then write

A(i"j) . -ljA(i-!'j) i (i,j) (Ii

ij ii.

A( 1,l) mA

Rewriting (3.1-3) through (3.1-6) in our new notation we have

a(i- l 'J)  n a -1 j) r a i s # jis - ij rs

a (i-l,J) + a(i-1j) n

(3-L-8) 9(ij) rs ri ij r # i s -
rs a (i-ij) + a(i-,j) n (i-1,J) r s j

ij iii a,

a (i- 1'J)  otherwise
rs
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Since a(i 'j) - a r - 1,2,...,n, we have
rr rr

(31-9)( ai-1) + a - n
ij Ij ii *ij ii ajii

We claim that the result of application of fij in some order

is to reduce A to a quasi-diagonal form. This follows from the

LEMA 13. Suppose we have a(i-l 'j) . 0 for s > r; s < j

w!th s < r < n; s j with j < r < i - 1 and let nij be chosen
(t~j) 0 n(i-11j)

s'l h that, a (j O in(3o-9), then a ri 0 for s > r;

a < j with s < r < n; s with j < r < i.

The proof is analogous to that of Lemma 7 of Chapter 2 and

will noT be repeated. As in Lemma 7 the proof shows that the only

el.emens of A~il j  which are altered by f i are [A(i- l ' j

k > i with (k,j) . P.

Thus the sequence of elementary transformations, determined by

eliminating each element with indi.es of type P, progressing down

each column first and then by columns left to right, reduces A to

a quasi-diagonal matrix whose diagonal entries are precisely those

of A,

let X be the matrix formed by the multiplication of the

taken in the same order as the f ° Namely

n

J-1 i>j
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Then X- AX Q, a quasi-diagonal matrix with Q A ii* But

from (3.1-1) ai., (3.1-2)

Foj-N.
J-*1 i>j

thus X - N and we have-

THEOREM 6. Let N - (n j) be a triangular matrix such that

n satisfies -a rl + n a a (i-1j) for (ij) e P;
ij ii I*j Ii ii ii

.Lj W 0 for (ij) P ex that ni. " 1, i - 1,2 .... n;

then

n a N- Q

where Q is quasi-diagonal and Q il A i - ,,..k



Section 3.2. A bound for a condition number of N.

This section is devoted to the determination of a bound for a

condition number of N, where N was defined in the preceeding

section. We begin by finding an expression for the element of the

form a (r lj) which involves elements of A and N. Finally we

find an expression for N which involves only elements of A.

LEMMA 14. For j + p < r,

( .3 2 -1 Q + P  J )  . P
(32-1) rj I at,j+ n +(,io

(-0

Proof. We shall prove this lema by induction on p.

For p - I we have by (3.1-8)

a l1J) a QJ) +aa(m)-a
rj rj r,j+l j+lj

a (n J-i) a (n, j-i)
rj rj+l j+l,j

(3.2-2)

a J+a nj+,,j

(3.2-2) holding by virtue of Lemma 13.

Assuming (3.2-1) holds for p - I we have by (3.1-8)

50
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a(j+p, j) .a(j+P-llj) a(J+P-l1J)
rj rj rJ+p j+p'j

(3.2-3) M a(J +p- rj) + a nrj r .j+p nJ~p~j

p-I

t0 'r~j+f Jfnjl + arj+p nj+pj

p

2~ ~ a~ j~jf n-4j

(3.2-3) holding by vir-ire of Lena 13.

In particular, we have for p - (r - 1) - j

LEMA 15. If r > j,

r-1
a (r-XjJ)
rj .j r nlj,

As we have seen before

a(1 - j3)

nljj a for (i,j) e P

Recalling that the diagonal entriee a of A are its eigenvalues

we may write X. for a j and X i for a ii* Then

a(i-i j)

.ij 10x -x
j a i

Let
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* 1

and

AA - diag (AVA 2, 0 0Ak)

Ais then a (strictly) lower triangular scalar matrix such that

~fai, for (iij) e P

0j L otherwise

Define

-(AAl i

and in general

Note that A~) 0, r > k since each successive multipli-

cation by A introduces at least one new diagonal of zero block

matrices.

THEOREM 7.

*1 b cosrcnad(0) AI(1)(

Proof. n (0) + A1)

A .(l)j - 0 for (i,j) i P, which agrees with the above.
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Assume now that

n L ~O)~j1 ~~ki~ for < < i ((,J) CP

then

i~l~j xi4.l i+1j i+1~j

a j 1+ 1+,

((=j

(X(O) t~ A + +~ki)~ 6 i:,

- (X(O) + -(l) + -(k-1))6

A~~() + (A A i + +( A'')~ a-i

i+1,j+ i+ij i+i,i + i+i,j

-(A + A )+. ~.+A



54

since A 0 and A,) - 0.A~i+i.,J

Lett ng L A1) + -(2) + + (k-) we note that L is

strictly lower triangular and Lr 0 0, r > k. Thus

N"-  (I + L)- 1  I L L 2 (-.1)k- 1 Lk-i

IHEOREM 8. If -V is any multiplicative norm,

C2)(N) < ( I + L) t-)(I) + -)(L) + o + [L)(L)] k-il

Inasmuch as the elements of A(r) and hence L are easily com-

putable it is not necessary to introduce a restricted Schur form.



CHAPTER 4

INTRODUCTION. Two appliit tone of the re%,101ts of the preceed-

irg chaptver6 wtl1. be t~on, -idered here. Section 4.1 will deal with

bounds for norms of powers of a fixed non-rormal. matri#. Bounds

for the norm, of tbe inverst of a fixed matrix are developed in

Section 4.2 and applied to the problsw of ,simatring resida

vectors and mal.rizces as octsted with the approxxmatee solu-t ion of

linear svstems and approximatre irnverses..

Sef-ton 4, Iterated Katrites. The interest for bounds of

norms of certain 'na~rices arises prin.-IpaXll from the study of

finite differ ence ,hemei for -oling h-,perbolic and parabolic

differenriali equatons Sac boundr. Wave been given by Lax and

Richtmeyer LIS], For Rrbitrary matricez 'Gavts~hl [9, 101 and

Os-.owski. ?42 hale oenveloped - tmates which require some knowledge

of the Jordan canooical Form,. More ree'~Henrici £141 has given

bounds which depend upon the ;pec*.r3! radt'r-3 and a certain measure

of nor-rormalvts introd .ed in his paper.

For normal. ma~rres we have of coairsp

B

as a simple consequence -,f t'hE fact that normal mdtricss are uni-

tarily similar to diagona. nmatrtces and ff is both a tunV'artly

invartapt and an axle-orlented norm,
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In contra#t to the above rcsults for non-normal matrices,

Theorem 9 below give* an estimste for ar(B r) which depends upon

all. the eigenvalues of B ac.cording to their multiplicities, and

a condltion number. These re.].ts reduce to (4.0-I) for B normal.

Let then B be a giver n X n matrix and U, a unitary

matrix such that

A -UBU*

is an otdered Schur form. Le N be chosen as in Theorem 6 such

the: Q 1-AN is quasi-diagonal. with Q - diag (Q llQ22. Qkk)

and Qii A of order nf. tm- ,2 .

Thus

Ar , NQ rN-

- N diag-• ,N i~g 10l.22" okkcN

If a represents the spectral, norm, we have using Lemma 6

(4.1-1) d(A' ) < C (N) O" diag (,r Q r - k r

SCU(N ma-A Or(Q r
< 1<kt k

Let. Q be written ara a sum of a diagonal. matrix Di  con-

taintng only it3 diagonal terms, and a strictly lower triangular

matrix, L ,
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Q =D +L

and

Lr
Lrtao, r> no

For an arbitrary ordered Schur form the D are not neces-
i

sarily scalar matrices and ronsequently will not commute with the

Li, preventing us from expanding (Di + L dr ac:ording to the

binomial, theorem. But since D is diagonal, if we expand r
1 i

any term with more than n. - I L 's vanishes, Thus1 1

r ) <a r )r-I + r r-n,+ n -I
(4.1-2) n <Ar r 1 n r i i

1

where V O(L) and Li X

From (4.1-i) and (4.2-2),

o(Ar) <C (N) may A +

+(i )i i o

+ r-nif Pi-l

Noting that Br - U*ArU and recalling that 0 is unitarily

invariant we have:

6(Br) < C(N) max A r ( Ar- i +
l<i<k ti I i

r-n +l n-I
S(n i - I ) n i i
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The estimate holds for any ordered Schur form. Indeed, since

specification of the ordering of the elgenvalues does not uniquely

determine a Schur form we can conclude.

THEOREM 9o If kB > 0,

o'(B) < min[C (N) maxt- r+ r A) r-  +"°

r )Zi j

+( 1. 1

if, XB W 0

Y(Br) < min[C (N) max fri r - 0.1, - M11

d(Br) _ 0 r > M

where M - max n, and where the minimum is taken over all ordered

Schur forms.

If B were normal., any Schur form would be diagonal implying

that N - 1, Thus C (N) -1 and r(B r) < ma _. Since

r< O.(Br) r.Br)

XB r) O (B* B in agreement with (4.0-1).



Section 4.2. Bounds for inverses, Let B be an arbitrary

ron-singular matrix, b a given vector and x. an alleged solution

of Bx - b. If we define the residual of x by r - Bx - b, and

if -z) is a vector norm, the error x- B B- r of Z can

be estimated as follows.

-i)(Z - B- )(B-1r) < (B- l ) 2)(r),

where T denotes any marriw norm compatible with 2) Similarly,

if X is an alleged inverse of B, and if z) is any multipli-
~ -l)

cative matrix norm we can calculate a bound for )(x - B ) in

terms of the residual matrix R - BX - I;

-2)(X - B-z - -1)(B -R) < -2)(B - ) -i(R).

For both problems we require a bound for 22(B-)o Such a

bound is, in principle, easily constructed if we assume that B is

similar to a diagonal matrix D:

B - SDS-lo

For, assuming that j is an axis-oriented norm and noting that

B- 1 - SD- S- I we have

59
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(4.2-1) ,)(B-I) < C (S) x Bl

If B were normal, then S could be caken unitary and the

spectral condition number of S would be 1. In this case

e(B- ]) < x and in view of Lemma 4.,

-t(B ) W x

Normal matrices are., of course, the only matrices unitarily

similay to diagonal matrices. Estimates for non-normal matrices

are not so easily derived, We see for instance thaz. the bound

(4.2-1), if at all appl'icable. requires the comp.ete diagonalization

of B,

If we let the function ffn be defined for all real x > 0 by

n 2 n
fn w) . x

we note that, f and x-1 f are monotonically increasing for x > 0,

and that

lir x -1 f n (x) -

x __> 0+

With the notation of the preceeding section we have then:

THEOREM 10. If B i non-singular and non-normal, and if

1, the
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I- i I t I

where the minimum is Laktn. over all ordered Schur forms.

Proof, As before we write Q 11" D + L

QI (D + L)

,- (I t D L) -

We cannrt expand (j D I ' ccrdtng to the binomial

expansion sin ce D ts no: Asa-.!y scalar But if we expand

wiuout .or:,.: g is ,til, true :ha- ary term with more than

-- I s vatishes 7 b I el.n< e

we have, upon setting

(Y(Qi ). 0.- +_ti + k

-) e

f



In view of

d(Q-) max 6(Q-1)

-1)

and

6(B
- 1 ) < C (N) max I

fcr every ordered Schur form. The theorem follows.



CHAPTER 5

Spectral Variation and Figenvalue Variation

Classical Results. Let the matrix A a (a j) have eigenvaluee

X i and let B - (b j) have eigenvalues pi, i - 1,2, .. ,n. The

qjantit.y

s s A(B) max min Ip, - XjA
151 n [1<j~n

is called the spectral variation of B with respect to A. It is,

in effect, the maximum distance from any eigenvalue of B to 'he

spectrum of A No one-to-one correspondence between eigenvales

is implied. However, the function v defined by

v -v(A,B) - min t max IX, - (i)

where the minimum is taken with respect to all permutations of the

set (,2.-...,n) and which is called the eigenvalue variation of

A and B does imply a one-to-one correspondence. We have, of

course, v(A,B) - v(B,A) whereas SA(B) s B(A) in general. In

addition

SA(B) < v(A,B)

for all matrices A and B.
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One of the best available bounds for s and v for arbitrary

matrices is given by Ostrowski (22]o (See also [24] po19 2)o

Nameiv, if M - max (!a j , b tji) and if the norm ax is as
1 ij< n

defined in Chapter I.., then

SA(B) < (n + 2)M [(A -B)

and

J(AB) < 2n(n 4. 2) M ~A B)

That the exponent 1,;n in the;e boknds cannot be improved in

general may be seen by considering an examvl due to G, E. Forsythe

(ses [281, p.405). In special ca"e, however., improvements are

poss ible

If A is s mi ar t'o a olagonal. matrix D,

A - SDS- l

and if -0 is any axis-oriented lub norm, then Bauer and Fike [33

showed that

(5,0-1) SA(B) < C*(S) -)J (A- B)

If further, A is novzl,, S may be chosen unitary and we

find for any norm %) majorizing the spec!T# norm
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(5.0-2) S A(B) < -)(A - B) .

If A ;nd B ara b3tb rorrmal and -)- r it follows from a

result of ~fcffman and Wielandt [1.5, that (5.0-2) is even valid for

the eigenvalue variat on

(5.0-3) v(A,) < C(A - B).

This re +t!. has b.en u ed frequeirtly b Bargmann, Montogomery

and von Neamanr in [].] for A and B either real 'y;metric or

hermiti an.

A more recent. result applicable to arbitrary matrices has been

contributed by Henri:i C14-1. Be.cau.e of the part that these

eStmates play In this Chap.er we fhall dev.-lop the necessary

notaion., lha estimates depend in particular upon a measure of

non-normality which we defin+ here.

If A is any matrixL, w- rerall tha- (Mirsky, C191) there

e.sts a unitary matrix U and a triangular matr.ix T surh that

A - UTU*,

T, ihe Schur ! riangular form. at A, is not uniquely de'*erminr.a for

a given A. We put

T -D + M

where D denotes the diagonAl matrix whose main diagonal cotncidea

with :hat of T. It follcw" tl'he. hat M ts a s,;riztly (lower)
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triangular matrix.

If - is a norm, the -)-departure from normality of A is

defined by

AJ~A) -. irf 2)(M)

where the inflnum is taken with respect, to all M that can appear

in a Schur form, It follows that 4A) - 0 if and only if A is

normal.

Let the function g * g(y) be defined for all real y > 0 as

the (unique) non-negative solution of the equation

2 ng g .+ g V

The function g is the Inverse of the function f defined in 4.2.

For later use we note the relationvs

(5.0-4) lim Y g(y) - I
y --> 0+

(5,0-5) n-1y < g(y) < y, 0 < y < n

(5.0--6) g(n) 1 1

yL - c/n(5°0-7) (n- y) l / < g(y) < y y >D

(5.G-8) ltm y-1/n 8(y) - 1,

y --> W>
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Henrictvs resol's may now be given.

THEOREM (HerT'rp&) Le: A be a non-n.-rni matrUx, *nd l~et

B -A 4 0, If ,..) i sportr&. ' norm, and if

(A)

,(B - A)

and

(5 0--5), (5.0-6) acid (5.0 -7 mnay be u~ed o )r-'ndr -h bo~knd

(5.0-9) ard (5.0-101 mr.,r -xplic i r. ;'0 rt - A) bounded away

from 2 pro (5 0-10 ahow, -,a ii "VA) ~->01 4be i':iuncate

(5 0-9' approahes (5.0-2). (5.O-P) shnw- , a+ fot a fitt non-

normal A an~d fot B - > A ie bc,i 05O-91) i, of the same order

It shoIld bc- t~"tge hat, Wtipandt C292 had previously, de-

f ined a mias ure o f non-no m tv o f a ma - ri vasure is ap-

plicablie only to ma*vtc+.- wht:L-- are sv~xtlar a diagcna7> mstr.tx,

and requlre4 tht Inowledgt- ,f a imatri* iffe~tinq the diagonalizatton.

Afte' de~ivtng bound4 for S A(B) and 4(,B) using quest-

diagrio rfpreerons w~e '~) inAle a CO~~rfo. b. ween flhe e

results and vl~ie of Htnri1 i gie abc'v-



Section 5.1. Given an arbitrary matrix M, let us assume

that a unitary U has been chosen such that. A - U*MU is an

ordered Schur form and that A has been transformed by N into

Q - dtag (Q I.Q22' .... Qkk) as indicated by Th-orem 6. Let

Xij j W 1,2,. .,n i be the eigenvalues of Qii, i - I,2,o,ko

Let B be an arbitrary matrix. We have from abo'v.e

N-'AN - Q -diag (Q IIQ22...Qkk

D being the diagonal matrix whose diagonal elements coincide with

those of Q

Let

W-lBN - B,

E - B N, k-IEN - F.

Then

BI F+Q.

Let p be an arbitrary but fixed elgenvalue of B (and

hence of BI) which is not an eigenvalue of A, Then (Q - pl)- I

exists and
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0 - det (B1 - gal) - dot (Q - pI + F]

-det [Q - jIJ det [I +(Q paI)- F30

Thus

det [I +(Q pI)- F] 0

and -1 is an eigenvalue of (Q-pI)- F. By Lemma 4

o{Q -l F] > 1.

But

UMF < C(N) O(E)

so

(5.1-1) ar[(Q - pi)-,] > o(~dE

(Di - pIl) is non-singular since D contains only elgenvalues

of A and consequently

(5.1-2) (Q ii- 1)1 . (D i + Li - F1)1l

W-(D - gIl) 1,+ (D i - PiI) 1 Lfjo

[I + (D, - p1)1' LU' (D i - u)

Now
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(5.1-3) [, + (Di - PI) L - I - (D, - p)- 1 L,

+ [(Di - p) -  2  ... (-1) [(Di - pI)- L] ni-i

The last sum extends to at most the ni -1 power since

I(Dt - pI)-  Ljr - 0, r > ni. The validity of this atatement can

be verified by noting that (Di - PI)-  Li has the same (ioe.

lower triangular) form as Li. and that Li , r >n

Let p, - 6[(D, - pI)-']

d(L ) - (

d(E) - e

Ca.(N) - x.

Note that

F1  1
P, max mi - PA min Iki -Pl1:S<n. 1< J: n i

From (5.1-2) and (5.1-3)

a, + (Di - PI)- -L 1 + Pi(i + Pii2 + _ + P- i

and
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2 ni ni
(5 1-4) 0 - jI) -j 5 pi + P2i 1 + + pn nl

fni(pi)

But

(5ol-5) ma(Q - x - ]
1< i< k

Thus from (5.1-I), (5.i-4) and (5.-5)

ni
-L < max 6 (Q1 i- < max

xe - 1<< k I ,- i< k '

For some index i i 0 say
0i

n

f (p

10

n

nxe fr he 0
ad0n ofo

9 ~ :S Pioo
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1_ 0
pi 0 10o
Pio giO0 ±-)

Then

Pi l< i< k

0/

and

(51-6) min IX j - max 

1 <j< n 0 1< i< k

Thus for any arbitrary eigenvalue p r of B it is pos-

sible to find some eigenvalue of A such that (5.1-6) holds.

From (5.1-6),

min I - max i

1< i<k - i< k

for r - 1,.2.... n and

SA() max mlinIXi - PrI < max ni
l<r<n i j l<i<k

THEOREM 11, Let A be a non-normal matrix, and let B-A # 0.
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If

c (L )

Yi. (N) d(B-AT

Lhen

Here Li and n are as defined earlier in this section.

If "L) is any norm majorizing 6, we have since g is non-

negative and monotone increasing

6(L i ) CrMi)

n, (L,) - n d(
g C (N) c(B - A) Ci[ ( -)(N)3

and consequently

(5.1-7) SA(B) _ max CL)(N) z)(B - A)
l< <k ni

-- g (Yi)

where

O(Mi )
yi C(N) )(B - A)

Let now 0 - Yl < y. and define xi  , i - 1,2. From

the monotonicity of x -(f(x)) it follows that
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Yl f(1) < f(x 2) Y2

g(y1) x '-' (y 2 )

Thus the function y ~g(y)]-l is monotonically increasing, and

we have from (5.1-7) replacing &(L ) by J(Li.);

COROLLARY. If A is non-normal and B - A - 0 we have for

any norm -L major in d 6

(5.1-8) SA(B) < ma- n i IC2iN) z.)(B-A)
1 l< <k g i yi)

where

-J (L )

Y" C2)(N) 2)(B - A)



SectionA 5.2. Comparison of bounds and related results.

Our objec.t here shall be to compare the results given by

Henriclt [143]"

(5.o-9) S (B) < --- )(B - A) , B A)
Sg n(y)

with %hat- derived earlier (CorollarNy to Theorem 11).

Y i - -) (L i
(5.-8) S (B) < C (N) -2. B - A). Y N)(B-A)

A l1 t<k n .f )2 B-A
g

For this purpose, let

iAL )I

and note that

z

Yi C1 (N)

For those norms 2) such that 9(L ) < LV(A), zI < y and we

have by the monotonicity of y[g(v)]
- I

z
(5.2-1.) < n

gn(z i (Y)

Let K - C2JN) . Then for thcse values of r such that
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(5.2-2) -- ) > g (z,)

we have fron (5.2-1)

z i Y-

n z n

Wtittng this inequality in terms of V

yi.cl N) <

g nI )y gn(,,)( xi

Thus, for those valt.e, of 7 such that zi < y and such

that (5.2-2) holds, the estimate (5.1-8) ii ar improvement over

(5.0--9) given by Hentic:i.o

We shall. then be inr.eres'ed trn derermintng conditions on z

in terms of n, n ii K such that

n

IL, z >g"(2

For this purpose let us introduce the function h(z) defined by-

h(z) 1- g0 (z) - gZ ¢ )

and det:ermine those values of z such that h(z) < 0. We may, of

course, assume that K > 1, for Y - I twpllie h(z) < 0 for
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positive values of z.

We begin by investigating the positive zeros of h(z)o

Define

S n l + + Ip~x) - n - 1 .. X

n£ ni

-+ - K) . + (I - K) x n + 1 K) x.

LEMKA 16.

h(z) 0 if and only If p(x) O

whdre

x n (z) > 0 [z - fn W)]

Proof, Suppose h(z) - 0 for some z > 0o Then gn(z) -
ni

g n(z/K)o

Letting x be this common value we have

z -x x + + xn

2 niZ x + x2 x n

Then

n n-.

p(x) m x + x n- 1 + + x -K(z x + . x) .0o

On the other hand if pt-*) O0,
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n -I ni ni-

x n + x °. + x a K(x i+x +°° +x).

Setting z fn (x) we have

nW= f (x)

and consequently

g(z) -g n )

proving our assumption.

We have shown that the positive (non-negative) zeros of h(z)

are in 4 one-to-one correspondence with those of p(x)o

By Descarte's rule of signs p(x) can have at most one

poitive zero, say x0. By the above lemma, h(z) - 0 for at

most positive value of z, namely z0 M fn(xo).

Recalling that

n

h(z) < 0 if and only if gi( ! ) > gn(z)

we are leading to the following lemmas.

LE KA 17 If g (z/K) > gn(z) for some z, then p(x) > 0

where x - g (z/K) and p(w) > 0 where w - gn(z)o

ni
Proof. Letting x - g (z/K), w - gn(z) we have
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nl ni-i
x + xo.. +x -

K

n n--i
w +1 + .. +wnz

and thus

n n?-i .. ,, (I I °" 0
v + n- + +* +iK(x n+x + n,71++)+

By hypothesuse, x > w and

Un i  n
fn(x) >fn(w) Kf (x) >Kfi (W).

Therefore

n£

p(x) - f?(x) - Kf (x) > 0
nip(w) _ n(w)- Kf i(w) > 0.

LDHA 18. If p(x) > 0 for some x then fni(z/K) > gn(z),

where z - fn(x).

Proof. p(x) > 0 implies that

n n -i
xn +xn-1 + +1. ~ +xI+ +X

or

xn~x-1  o..+>En n-i -+x

x n + -x +...+x-Kn(x +x +...+X) +q

for some q > 0.

Let
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WP gni[fnl(x) + q]

so that
ni  ni

f (w) f n (x) + q.

Then w > x, and

n x--Ini n-i

x + x .... + x K(w + w + o + W)

ni  nin
Since z - fn(x),: z/K - f (w) and f (zK) nw > x gn(z).

Combining these two lemmas we see that

h(z) < 0 if and only If p(-x.) > 0, z _ fn(x) Cx _ gn(z)]o

Sia :e p(x) > 0 for large x, and since p(x) has at most

one poitive root, say xO, p(x) > 0 for all x > xOO Co se-

qxently h(z) < 0 for all z > z0 W fn(x 0). If p(x) has no

positive zero, p(x) > 0 for all x, > 0 and h(z) < 0 for all

z > O

The determination of posttive zeros of p(x) is, in general,

a difficult problem. We shall instead determine portions of the

positive &-axis for which p(x) > 0. It is of course only necessary

to find any point x0 > 0 for which p(x0) > O. For then p(x) > 0,

Tr> x 
a tThere ate three cases t~o consider.
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Case 1o Kni W n.

In this case p(l) - 0 and.

p(i) > 0 for x > 1;

h(z) < 0 for z > n.

Case 2. Kn > n.

If x 1 1, we may rewrite p(:K) as

n~l n 1.,"

p(X) Wf  Y
x-I

Then

r(x) - 1) p(x)

n. l n +1

has the same sign as p(x) for x > 1 and opposite sign for

Y < 1. But

I n t1 I IL
n - .-n-n , n- n i

, (K- 1) > 0.

1 1

Thus p(K ) > 0 since K t > 1. Hence

p(11) > 0

nz n-na least for a > K a h(z) < 0 at least for z > fn' tK
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Case 3. Kn < n.t1

p(1) - n - Kn > 0

p(im) > 0 for Kc > 1

h(z) < 0 for z >fn() 

THEOREM 12. For all norms -2), such that 1)(L) < A2)(A),

t 1,? ....,

n z
1. g - >8 (2  for z >n if K ni - n

11

n I_ > f.nn i f K n i2. gfl(-K ) > g (z x ) for z,? f >n

n z_
3) g > gn(z for z >n f K n

Since y AA z w- have
JKL7 ±

1

COROLLARY, For all norms 2) such that

-z(L ) < (A -1,2, -..,k

yl Cj N)

n (y.) 
g()

for

> aA.A n

'K
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2. Y >a2A) fnn-lC if Kn >n

9L 7)

3. y _n j if 1n < .

Thertfor the estimate (5.1-8) represents an improvement over

(5,0-9) if for each i

1 y > P mal- . for KP. nl.< iL< k L t

-1

2o > fn( K ) xa for Kni > n
1< i<g ,

3. y > n max -- A- for Kn <.,.

The intersection of the regions determined for each i above yields

an interval of the y axis for whit:h oux tetmate is preferable.

The above analysi3 is valid for every ordered Schur form A.

Therefore we have-

THEOREM 13, Under the hvpothesese of Theorem 1.1,

SA(B) < min Ma. 1- A)'

L l<i< kg t(YIt)

where
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-1)L(L

Y, c.(R) 2)(B - A)

and :eb minimum t., caken w, th respect, to aLil ordered Schur forms.

From the fact that B- A - U(U*BU- M)U& and the unitary

inviriance of 6,, 6(B - A) UOBU - M) ano 4* may rewrite the

above theorem as follows

COROLLAR.- For noar-normal. M with M - B 1 0 we have for

a!ny norm -) domin&tin& ci

(5.2-3) SM(B) < min Y C (N) (U*BU- M)
- I< I<k I)

where

VI C.2 N) M,.3!~ )

and the minimum is taken with re'spe. t to a)',, U occurring in an

ordered Schur form of M.

Related results on -2)(M,B)

For given matrices M, 8 sa~tsfying the hypotheses of

Theorem Ii let 8 represent the quanticy on the right hand side

of (5,?-3) The statement ,f the above corollary may then be

interpreted geometrcallv bY saying that the ipeccrum of B is

contained in the uniton. I of the dis.
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Di  X I < 8) 1 1 ,2, ,k.

Since B --- 0 monotonically as U*BU --- M, or alternately,

as B -> A we may conclude by a well known continuity argument

(see eg. (22]) that each component of L5  con , ins as many eigen-

values of B as of M, From this fact we can obtain, again using

a well-known argumert (see especially the translator's note in £23])

'fe fcilowing result °

THEOREM 1.4 For non-normal M with M - B # 0 we. have for

any norm ._ ) dominatinj 6'

v(M,B) < (2k- 1) min max C W)-(-BU M)I < L:< k gn, ()-

where

Yi C.1)(N) -j(UWBU -M

and where the minimum is taken with resp"ect to all. U occurring in

an ordered Scbur form of M,
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APPENDIX

The Matrix Equation -AX + XB - C and Related Results

The problem of finding a solition to the matrix equation

-AX + XB - C where A, B are square matrices of arbitrary order

be denoted as problem (A). It Ls of importance in the development

of a canonical form, which in turn is applied to the solution of

problems (ii), (iii) and (iv) as set forth in the Introduction.

Let ( be a Banach algebra, with elements A,BQ,.... T will

be an operat:or on 0 such tha:

T(X) - -AX !- XB for every X e

The following results are to be found in the literature.

Result 1,. (Rutherford, [263]

Let 3 be the algebra of n X n matrices. If the character-

istic roots of A are distinct from the characteristic roots of 13,

then T
-I exists and is bounded.

The proof, though constructive, depends upon a complete knowl-

edge of the Jordan Canonical form,

Result 2. (Heinz, [13j]

Let. ( be the space of bounded linear operators on a Hilbert

space #, with inner product o If there exist real numbers

a and b such that a > b, B + B* < b, A + A* > a,

then f-1 exists as a bounded linear operator and has the

88
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r_ eresentatioon

" 0  e Q d t,

where by, A _< o we neon (u..Au) < a for all ,oE

Notable exte ston, of Result 2 are give, by Rosenblum [253 and

Cordes [5] [6],

Resilt 3.

'2iveni [l- givis a formal soltion of AX + XAT  Y in terms

of adjoinzs. whbch alt:hojgh nort done Lo his paper- is immedtateiy

extendable to the problem AX + XB - Y The proof and subsequent

stmplicity of the represen.ation depend upon the assumption of

simplicTry of the roots of A (or B), a ievere restriction for our

purposes These resul. generalize those of Hahn L'i2] for the case

Y II

We shall see that an integral, representation of the solution

of -AX + XB C similar to tlar, gtven by Result 2 is valid under

assumptions smilar to those in Result I but without the restriction

that A, B and C be square matrices of order n.

TREOR4 A-. A nece5sary and sufficient condition that probl

(A) have a solution for, all C is rhAr -.X . +-1. j # 0 where XI

are the eigenvalue,, of A and p the e.igenvalues of B; i.e.

if and only if Lthe e.jenva..es of A differ from those of B. If

a solutton exists it ts untre,

Proof Let A C B denote the Kronecker product of arbitrary
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matrices A and B, Tha: is, A(-)B is a matrix whose general

element is a tjB. The eigenvAlues of A® B are all the possible

products X jp where XI  is avy elgenvalue of A and is

any eigenvalue of B, [Bellmman, [413 ,

If we consider -AX 4- XB - C as a system -)f linear equations

T
in the urknowns, xj the coefficie.t matri's i. -A&I + 1(3)B

the roors of which are -- Xt P. By assumption -k 1 pf 0.

Therefore a (unique) soLurtaton xsts.

Resuit 4, EBellman E41, p I75]

If the e pression

X 0oo -At, CeBt dt

exists for a1ll C. .t t. rpsents the ,it'que 6olution of

--AX + XB

Tho .xtstenc.e of the integral impltes that lim z(t) 0 where
t -> c

2(.") - -At cf.Br ,

We shall. examlne the form of z(t.) in detail, For any square

scalar matrix G, let J denote irs Jordan Canonical form, Thus

there exists a nonsingular constant matrt4 T such that

G - T.J-

J ha6 the form



19c

/j 0 0 .. 0

0 0 1 0 . 0

J- 0 0 J2 0

0 0 0 ..o /

where J is a diagonal matrix with diagonal entries 1i92".O9 q

and

0 nq+i 1 ... 0 0

J, 1 . ... . . (1 1,2, ....s)

o 0 0 Tq+ 1

o 0 0. 0 q+

,, I + Z

q+ I r. i

where

0 1 0 .0 0\

0 0 1 0 0

z . 0 0

1. 0 0 0 0 1

\0 0 0 0 0/
\ /

is of order r C

It follows that



t30
e 0 0O

ttJ
o 0

tJJ

0 o e. i

and

I 0 .0

tj0 0 e 0

e

Since J, x ~ I r+ z iand from the fac~t thatqi

commnutes with zwe have

j ql- t £
e e e

Thus

Tr (r) -1

tI l0 1 t . 2tT

0 00 1
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where J is an ri X ri matrix.

Hence if JA' JB are, respectively, Jordan Canonical forms

for A and B and *T,. V are nonsingular matrices such that

A -IJAT-1, B - VJBV-1

it follows that,

-At -tJA t-1, Bt tJB V-1.e Vte T e V V

and

e-tJA T- tJBV-

z(t) e tA CV e t B V 1

Thus every element of z(t) is a linear combination of terms of

tbe form

(-x. + p )r

e PU r)

where pk(t) is a polynomial. of degree not exceeding n + m - 2 if

A is of order n and B is of order m.

It, is clear then that if Re X I > Re X lim z(t) - 0. More-
t -> D

over it is clear in this case that tbe integral exists for all C

since each element of z(r) is integrable. We have then the fol-

lowing lemm,,

LEMMA A,, A sufficient condition that

oo e-At CeBt.0 dt
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be a solution of the mat,rtK equation

-- AX 4 XB - C

A, t hat Re XI > Re pj for all and pj1  eigenvalues of A

and B resp!,ctivel. The o~utior- if I. exis's, is unique.

We shall now show that it is possible to give an integral

formiula for X similar to Result 2 which will be valid if

Re k >- Re a j for all. k ' P I '

Re XI >-Re p i implies rhat either

(1) Re X > Re X.

or

(2) Re X Rep and I X > M pJ

We have already disposed of (1) to the preceeding lema and

mus t now consider the ca-ze where (2) boldi for some or all of the

roots of A and B.

Insread, however, of !.rying to ftd a direct solution of

(A-1) -AX t XB - C,

we shall solve the system

100t te
(A-2) -e AX 4 Xe B - Ce

where e is a real, number to be determined

Clearly :oy solui top of (A-2) will be a solution of (A-I) and

the uniqie solution wil.1 be gtivrx by
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(A-3) X , -d0 °° ee e xp[--e'e ALI C expiete Bt] dt

provided the inregral, e.%vs.-

The idea is to demonst.rate values of 0 such that

Re e 0 > Re e u for all k C p I, and to apply the preceeding

l..emra yielding the represemntiorw giv* by (A-3).

For this lt an arbirrarv root of A be given by Xilx i+ Yi;

anid that of B bs p , ujk + L ij.,

181The roots of -,e 10A aret-- i co5 0 r yi sin 0) +

1(-y cos e - %i sin 0) and those of e B are (u cos 0 -

vj Sin e) 4 I(Vj Cos 0 t, U. i ),

Le ting

rr

h .(e) '(u -g)cl - v.) sinO]

tL(v - VI) Cos e + (u - x sin o

we have that every term of

z (t) - e10 fWpF-e 1 At C expreio Bt]
e L I L -

consists of linear combLnaitons of ,:rws of the form e h j()pk(t),

wh+'re pk(t) 4re polynomial' in t. of finite degree.

A sufficient condition that luim za(t) - 0, and indeed that.
t --> aD

ttie ittegral (A-3) ex i! is hat

(A-4) Re b (0) < 0 for all i, j.
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I

We shall show that it is always possible to choose a e such

that. (A-4) holds. Indeed B can be chosen from a non--degenerate

Lnter-val

Let

A-5) C1 j -X i  u j

(A-6) -ij Yi - v.

Then

Re h j(0) - ti Cos 0 t 13,j sin e.

We havc, by the lexicographic ordering:

a,, < 0 .%nd a,, 0 implies 13j > 0.

If all a j < 0 it is sufficient to choose e - 0,

.If a ij - 0 .hen Re h 1(0) < 0 iff sin e < 0, ioe.

x < e < 2xo

If some aij < 0, for Re h ij() < 0 the following relation-

ships musr be true-

czj cos e t o,, sin 0 < 0

PQ sin e < - caj Cos e.

If, in addition, a < 0 < 2v
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0

-'ij

1].__ 1_ > cot 0.

(A- 7) Let v j f Pi -aj

I f

(A-8) min y.
I, j

co-: G < -y implies that Re h (O) < 0., -oo since this wouldii

mean that for some i, a. a 0, 53 < 0 which contradicts the

a;sumed lextcograpbic orde.ring Since cot e assume all. value

b tw-en - co and + ao in rhe interval A < 0 < 2%,, it is suf-

ficient to choose e sucb that

(A-9) f < ot I < O < 2 ,,

LEMMA B, If y is defined by (A-8) and if 0 is 3uch that

(A-9) holds then

X oo O e pFe 10 Atj C exp[eto Bt dtX --/0 RP

is the uniue solution of

-AX -* XB C,
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REMARK, If all aig < 0, we may take 0-0 and

x 00 e -tCe Btdt

t~ he unique solution of

_AX + XE - C.


